Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 318, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654190

RESUMEN

BACKGROUND: Class III peroxidases (PODs) perform crucial functions in various developmental processes and responses to biotic and abiotic stresses. However, their roles in wheat seed dormancy (SD) and germination remain elusive. RESULTS: Here, we identified a wheat class III POD gene, named TaPer12-3A, based on transcriptome data and expression analysis. TaPer12-3A showed decreasing and increasing expression trends with SD acquisition and release, respectively. It was highly expressed in wheat seeds and localized in the endoplasmic reticulum and cytoplasm. Germination tests were performed using the transgenic Arabidopsis and rice lines as well as wheat mutant mutagenized with ethyl methane sulfonate (EMS) in Jing 411 (J411) background. These results indicated that TaPer12-3A negatively regulated SD and positively mediated germination. Further studies showed that TaPer12-3A maintained H2O2 homeostasis by scavenging excess H2O2 and participated in the biosynthesis and catabolism pathways of gibberellic acid and abscisic acid to regulate SD and germination. CONCLUSION: These findings not only provide new insights for future functional analysis of TaPer12-3A in regulating wheat SD and germination but also provide a target gene for breeding wheat varieties with high pre-harvest sprouting resistance by gene editing technology.


Asunto(s)
Germinación , Latencia en las Plantas , Triticum , Triticum/genética , Triticum/enzimología , Triticum/fisiología , Latencia en las Plantas/genética , Germinación/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Giberelinas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Peroxidasas/genética , Peroxidasas/metabolismo , Plantas Modificadas Genéticamente , Ácido Abscísico/metabolismo , Genes de Plantas
2.
Plant Physiol Biochem ; 210: 108541, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552264

RESUMEN

Heat shock transcription factors (Hsfs) play multifaceted roles in plant growth, development, and responses to environmental factors. However, their involvement in seed dormancy and germination processes has remained elusive. In this study, we identified a wheat class B Hsf gene, TaHsf-7A, with higher expression in strong-dormancy varieties compared to weak-dormancy varieties during seed imbibition. Specifically, TaHsf-7A expression increased during seed dormancy establishment and subsequently declined during dormancy release. Through the identification of a 1-bp insertion (ins)/deletion (del) variation in the coding region of TaHsf-7A among wheat varieties with different dormancy levels, we developed a CAPS marker, Hsf-7A-1319, resulting in two allelic variations: Hsf-7A-1319-ins and Hsf-7A-1319-del. Notably, the allele Hsf-7A-1319-ins correlated with a reduced seed germination rate and elevated dormancy levels, while Hsf-7A-1319-del exhibited the opposite trend across 175 wheat varieties. The association of TaHsf-7A allelic status with seed dormancy and germination levels was confirmed in various genetically modified species, including Arabidopsis, rice, and wheat. Results from the dual luciferase assay demonstrated notable variations in transcriptional activity among transformants harboring distinct TaHsf-7A alleles. Furthermore, the levels of abscisic acid (ABA) and gibberellin (GA), along with the expression levels of ABA and GA biosynthesis genes, showed significant differences between transgenic rice lines carrying different alleles of TaHsf-7A. These findings represent a significant step towards a comprehensive understanding of TaHsf-7A's involvement in the dormancy and germination processes of wheat seeds.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Germinación , Factores de Transcripción del Choque Térmico , Latencia en las Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Latencia en las Plantas/genética , Germinación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Arabidopsis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alelos
3.
Sci Rep ; 14(1): 6212, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485714

RESUMEN

Physical exercise intervention can significantly improve the liver of patients with Non-alcoholic fatty liver disease (NAFLD), but it is unknown which exercise mode has the best effect on liver improvement in NAFLD patients. Therefore, we systematically evaluated the effect of exercise therapy on liver and blood index function of NAFLD patients through network meta-analysis (NMA). Through systematic retrieval of PubMed, Cochrane Library, Web of Science, EBSCO, and CNKI (National Knowledge Infrastructure), two reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies by means of databases from inception to January 2023. The NMA was performed using the inconsistency model. A total of 43 studies, 2070 NAFLD patients were included: aerobic training (n = 779), resistance training (n = 159), high-intensity interval training (n = 160), aerobic training + resistance training (n = 96). The results indicate that aerobic training + resistance training could significantly improve serum total cholesterol (TC) (Surface under the cumulative ranking curve (SUCRA) = 71.7), triglyceride (TG) (SUCRA = 96.8), low-density lipoprotein cholesterol (LDL-C) (SUCRA = 86.1) in patients with NAFLD including triglycerides. Aerobic training is the best mode to improve ALT (SUCRA = 83.9) and high-density lipoprotein cholesterol (HDL-C) (SUCRA = 72.3). Resistance training is the best mode to improve aspartate transaminase (AST) (SUCRA = 81.7). Taking various benefits into account, we believe that the best modality of exercise for NAFLD patients is aerobic training + resistance training. In our current network meta-analysis, these exercise methods have different effects on the six indicators of NAFLD, which provides some reference for further formulating exercise prescription for NAFLD patients.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/terapia , Metaanálisis en Red , Ejercicio Físico , HDL-Colesterol , Triglicéridos
4.
Small ; : e2309877, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332445

RESUMEN

Ultrafast laser is expected as a promising strategy for micro-LEDs (µ-LEDs) transfer due to its inherent property of suppressing thermal effects. However, its ultrahigh peak power and the unclear transfer mechanism make its transfer quality and efficiency unsatisfactory. Here, the study reports the high-precision mass transfer of 20 µm fine-pitch µ-LEDs via in situ nanoparticles (NPs) resonance enhancement in burst mode ultraviolet picosecond laser irradiation. This technique suppresses the thermal melting effect and rapid cooling behavior of plasma by temporal modulation of the burst mode, generating NPs-induced resonance enhancement that accurately and controllable drives a single unit up to tens of thousands of µ-LEDs. The transfer of large µ-LED arrays with more than 180 000 chips is also demonstrated, showing a transfer yield close to 99.9%, a transfer speed of 700 pcs s-1 , and a transfer error of <±1.2 µm. The transferred µ-LEDs perform excellent optoelectronic properties and enable reliable device operation regardless of complex strain environments, providing a reliable strategy for preparing broader classes of 3D integrated photonics devices.

5.
Leuk Lymphoma ; 65(4): 472-480, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38198635

RESUMEN

To explore immune cell infiltration and PDL1 expression in the tumor microenvironment (TME) of primary central nervous system lymphoma (PCNSL), we performed immunohistochemical staining on paraffin-embedded tumor tissues from 34 patients diagnosed with PCNSL. CD8 and CD163 positive cells were manually counted, and PDL1 expression was quantified by the H-score scoring method in the tumor center and around the tumor. The Kaplan-Meier method was used to analyze the prognostic value of the TME. We found obvious infiltration of CD8+ CTLs and CD163+ TAMs in the TME of PCNSL patients. And PDL1 was expressed in the tumor center as well as around the tumor. Survival analysis showed that high CD8+ CTLs levels and high intratumoral PDL1 expression were significantly correlated with longer OS. High CD8+ CTLs and CD163+ TAMs levels were associated with longer PFS.


Asunto(s)
Linfoma , Neoplasias , Humanos , Pronóstico , Macrófagos/metabolismo , Microambiente Tumoral , Linfocitos T Citotóxicos , Linfoma/patología , Neoplasias/metabolismo , Sistema Nervioso Central/patología
6.
Ann Hematol ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38010409

RESUMEN

Chemokine ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) both play significant roles in the tumor microenvironment (TME). CXCL13 in cerebrospinal fluid (CSF) has recently been found to have significant diagnostic and prognostic value in primary and secondary central nervous system (CNS) diffuse large B-cell lymphoma (DLBCL), and the CXCL13-CXCR5 axis has been shown to play an important chemotactic role in the TME of CNS-DLBCL. In this review, we first describe the clinical value of CXCL13 in CSF as a prognostic and diagnostic biomarker for CNS-DLBCL. In addition, this review also discusses the specific mechanisms associated with the CXCL13-CXCR5 axis in tumor immunity of primary diffuse large B cell lymphoma of the central nervous system (PCNS-DLBCL) by reviewing the specific mechanisms of this axis in the immune microenvironment of DLBCL and CNS inflammation, as well as the prospects for the use of CXCL13-CXCR5 axis in immunotherapy in PCNS-DLBCL.

7.
Biomark Med ; 17(12): 563-576, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37713234

RESUMEN

As a regulator of the dynamic balance between immune-activated extracellular ATP and immunosuppressive adenosine, CD39 ectonucleotidase impairs the ability of immune cells to exert anticancer immunity and plays an important role in the immune escape of tumor cells within the tumor microenvironment. In addition, CD39 has been studied in cancer patients to evaluate the prognosis, the efficacy of immunotherapy (e.g., PD-1 blockade) and the prediction of recurrence. This article reviews the importance of CD39 in tumor immunology, summarizes the preclinical evidence on targeting CD39 to treat tumors and focuses on the potential of CD39 as a biomarker to evaluate the prognosis and the response to immune checkpoint inhibitors in tumors.

8.
Front Plant Sci ; 14: 1107277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818881

RESUMEN

Introduction: Seed dormancy (SD) significantly decreases under high temperature (HT) environment during seed maturation, resulting in pre-harvest sprouting (PHS) damage under prolonged rainfall and wet weather during wheat harvest. However, the molecular mechanism underlying HT-mediated SD remains elusiveSeed dormancy (SD) significantly decreases under high temperature (HT) environment during seed maturation, resulting in pre-harvest sprouting (PHS) damage under prolonged rainfall and wet weather during wheat harvest. However, the molecular mechanism underlying HT-mediated SD remains elusive. Methods: Here, the wheat landrace 'Waitoubai' with strong SD and PHS resistance was treated with HT from 21 to 35 days post anthesis (DPA). Then, the seeds under HT and normal temperature (NT) environments were collected at 21 DPA, 28 DPA, and 35 DPA and subjected to whole-transcriptome sequencing. Results: The phenotypic data showed that the seed germination percentage significantly increased, whereas SD decreased after HT treatment compared with NT, consistent with the results of previous studies. In total, 5128 mRNAs, 136 microRNAs (miRNAs), 273 long non-coding RNAs (lncRNAs), and 21 circularRNAs were found to be responsive to HT, and some of them were further verified through qRT-PCR. In particular, the known gibberellin (GA) biosynthesis gene TaGA20ox1 (TraesCS3D02G393900) was proved to be involved in HT-mediated dormancy by using the EMS-mutagenized wheat cultivar Jimai 22. Similarly, a novel gene TaCDPK21 (TraesCS7A02G267000) involved in the calcium signaling pathway was validated to be associated with HT-mediated dormancy by using the EMS mutant. Moreover, TaCDPK21 overexpression in Arabidopsis and functional complementarity tests supported the negative role of TaCDPK21 in SD. We also constructed a co-expression regulatory network based on differentially expressed mRNAs, miRNAs, and lncRNAs and found that a novel miR27319 was located at a key node of this regulatory network. Subsequently, using Arabidopsis and rice lines overexpressing miR27319 precursor or lacking miR27319 expression, we validated the positive role of miR27319 in SD and further preliminarily dissected the molecular mechanism of miR27319 underlying SD regulation through phytohormone abscisic acid and GA biosynthesis, catabolism, and signaling pathways. Discussion: These findings not only broaden our understanding of the complex regulatory network of HT-mediated dormancy but also provide new gene resources for improving wheat PHS resistance to minimize PHS damage by using the molecular pyramiding approach.

9.
Plant Physiol Biochem ; 196: 608-623, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36780723

RESUMEN

Calcium-dependent protein kinases (CPKs), important sensors of calcium signals, play an essential role in plant growth, development, and stress responses. Although the CPK gene family has been characterized in many plants, the functions of the CPK gene family in wheat, including their relationship to seed dormancy and germination, remain unclear. In this study, we identified 84 TaCPK genes in wheat (TaCPK1-84). According to their phylogenetic relationship, they were divided into four groups (I-IV). TaCPK genes in the same group were found to have similar gene structures and motifs. Chromosomal localization indicated that TaCPK genes were unevenly distributed across 21 wheat chromosomes. TaCPK gene expansion occurred through segmental duplication events and underwent strong negative selection. A large number of cis-regulatory elements related to light response, phytohormone response, and abiotic stress response were identified in the upstream promoter sequences of TaCPK genes. TaCPK gene expression was found to be tissue- and growth-stage-diverse. Analysis of the expression patterns of several wheat varieties with contrasting seed dormancy and germination phenotypes resulted in the identification of 11 candidate genes (TaCPK38/-40/-43/-47/-50/-60/-67/-70/-75/-78/-80) which are likely associated with seed dormancy and germination. The ectopic expression of TaCPK40 in Arabidopsis promoted seed germination and reduced abscisic acid (ABA) sensitivity during germination, indicating that TaCPK40 negatively regulates seed dormancy and positively regulates seed germination. These findings advance our understanding of the multifaceted functions of CPK genes in seed dormancy and germination, and provide potential candidate genes for controlling wheat seed dormancy and germination.


Asunto(s)
Arabidopsis , Latencia en las Plantas , Latencia en las Plantas/genética , Germinación/genética , Triticum/metabolismo , Filogenia , Calcio/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Semillas/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
10.
J Dermatol Sci ; 109(3): 108-116, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36841722

RESUMEN

BACKGROUND: Treponema pallidum (Tp) is a widespread and destructive pathogen that leads to syphilis. As the acknowledged executor of host immunity, macrophage plays vital roles in combating the invasion and migration of Tp. However, the mechanisms of these processes are largely unknown, especially the critical driver genes and associated modifications. OBJECTIVE: We aimed to systematically dissect the global N6-methyladenosine (m6A) RNA modification patterns in Tp-infected macrophages. METHODS: The RNA of Tp-infected/non-infected macrophage was extracted, followed by mRNA sequencing and methylated RNA immunoprecipitation (MeRIP) sequencing. Bioinformatics analysis was executed by m6A peaks and motifs identification, Gene ontology and signaling pathways analysis of differentially expressed genes, and comprehensive comparison. The m6A levels were measured by RNA Methylation Assay, and m6A modified genes were determined by qPCR. RESULTS: Totally, 2623 unique and 3509 common m6A peaks were proved along with related transcripts in Tp-infected macrophages. The common m6A-related genes were enriched in the signals of oxidative stress, cell differentiation, and angiogenesis, while unique genes in those of metabolism, inflammation, and infection. And differentially expressed transcripts revealed various biological processes and pathways associated with catabolic and infection. They also experienced comprehensive analysis due to hyper-/hypo-methylation. And the m6A level of macrophage was elevated, along with qPCR validation of specific genes. CONCLUSION: With a particular m6A transcriptome-wide map, our study provides unprecedented insights into the RNA modification of macrophage stimulated by Tp in vitro, which partially differs from other infections and may provide clues to explore the immune process for syphilis.


Asunto(s)
Sífilis , Treponema pallidum , Humanos , Treponema pallidum/genética , Sífilis/genética , Transcriptoma , Adenosina , Macrófagos
11.
World Neurosurg ; 170: 99-106, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36396049

RESUMEN

Primary central nervous system lymphoma (PCNSL) is a rare extranodal non-Hodgkin lymphoma with poor prognosis. In recent years, the emergence of genetic subtypes of systematic diffuse large B-cell lymphoma has highlighted the importance of molecular genetics, but large-scale research on the molecular genetics of PCNSL is lacking. Herein, we summarize the frequent gene mutations and discuss the possible pathogenesis of PCNSL. Myeloid differentiation primary response gene 88 (MYD88) and CD79B mutations, which cause abnormal activation of noncanonical nuclear factor-κB, are prominent genetic abnormalities in PCNSL. They are considered to play a major role in the pathogenesis of PCNSL. Other genes, such as caspase recruitment domain family member 11 (CARD11), tumor necrosis factor alpha induced protein 3 (TNFAIP3), transducin (ß)-like 1 X-linked receptor 1, cyclin dependent kinase inhibitor 2A, PR domain zinc finger protein 1, and proviral insertion in murine malignancies 1, are also frequently mutated. Notably, the pathogenesis of immune insufficiency-associated PCNSL is related to Epstein-Barr virus infection, and its progression may be affected by different signaling pathways. The different mutational patterns in different studies highlight the heterogeneity of PCNSL. However, existing research on the molecular genetics of PCNSL is still limited, and further research into PCNSL is required to clarify the genetic characteristics of PCNSL.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Infecciones por Virus de Epstein-Barr , Linfoma de Células B Grandes Difuso , Humanos , Animales , Ratones , Herpesvirus Humano 4 , Mutación/genética , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/metabolismo , Pronóstico , Sistema Nervioso Central , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/terapia , Neoplasias del Sistema Nervioso Central/metabolismo
12.
J Craniofac Surg ; 33(8): 2560-2566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36409873

RESUMEN

BACKGROUND: Several operative procedures have been introduced to reshape the aesthetic mandibular angle, but unaesthetic results have occurred now and then. Most studies focused only on the facial shape in frontal view but not on the new gonion angle and gonial position in lateral view. The authors describe a new and satisfactory surgical method of mandibular angle contouring to reconstruct the new aesthetic mandibular angle and reshape an oval face for the excessive prominence of the mandibular angle. PATIENTS AND METHODS: The surgery was carried out with the two-crossed ostectomy at the inferior and posterior margin of the mandible, respectively. For 10 years from 2009 to 2019, the two-crossed ostectomy of mandibular angle has been performed in 1217 consecutive series of Chinese patients. The gonion angle degree, the facial width between the dual gonions, and the horizontal and vertical distances from the gonial point to auricular lobule were measured and recorded before and after an operation. RESULTS: After the two-crossed ostectomy, the patient's gonion angle significantly changed to 123 to 128 degrees in both women and men. The vertical distance from the horizontal line of the auricular lobule to the gonial point decreased by 2 to 2.5 cm markedly, and the gonial point became located at about 0.85 cm in front of the vertical line of the auricular lobule. The two-crossed ostectomy of the mandibular angle effectively reconstructed the new aesthetic gonion angle and gonial position, reshaped the oval face, and achieved a highly satisfactory result. CONCLUSIONS: For patients with excessively prominent mandibular angle, the two-crossed ostectomy at the mandibular ramus and the body could reconstruct the new aesthetic gonial angle and position, make the lower one third of the face attractive from the lateral and anterior perspectives, and deliver greater patient satisfaction and surgical safety.


Asunto(s)
Pabellón Auricular , Procedimientos de Cirugía Plástica , Masculino , Humanos , Femenino , Procedimientos de Cirugía Plástica/métodos , Estética Dental , Mandíbula/diagnóstico por imagen , Mandíbula/cirugía , Satisfacción del Paciente , Pabellón Auricular/cirugía
13.
Invest New Drugs ; 40(6): 1244-1253, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36306030

RESUMEN

The endoplasmic reticulum (ER) is a critical organelle that preserves the protein homeostasis of cells. Under various stress conditions, cells evolve a degree of capacity to maintain ER proteostasis, which is usually augmented in tumor cells, including colorectal cancer (CRC) cells, to bolster their survival and resistance to apoptosis. Bortezomib (BTZ) is a promising drug used in CRC treatment; however, its main limitation result from drug resistance. Here, we identified the role of tripartite motif-containing protein 59 (TRIM59)-a protein localized on the ER membrane- in the prevention of BTZ-mediated CRC killing. Depletion of TRIM59 is associated with the enhancement of ER stress and a remarkable increase in unfolded protein response (UPR) signaling. Besides, TRIM59 strengthens ER-associated degradation (ERAD) and alleviates the generation of ROS. Of note, TRIM59 knockdown synergizes with the anti-cancer effect of BTZ both in vitro and in vivo. Our findings revealed a role for TRIM59 in the ER by guarding ER proteostasis and represents a novel therapeutic target of CRC.


Asunto(s)
Neoplasias Colorrectales , Proteostasis , Humanos , Bortezomib/farmacología , Retículo Endoplásmico/metabolismo , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico , Apoptosis , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología
14.
Front Immunol ; 13: 857727, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444649

RESUMEN

Background: Previous studies have confirmed that the bacterium Treponema pallidum (TP) or its proteins provide signals to macrophages that induce an inflammatory response; however, little is known about the negative regulation of this macrophage-mediated inflammatory response during syphilis infection or the underlying mechanism. Recent evidence suggests the role of the RNA modification, N6-adenosine methylation (m6A), in regulating the inflammatory response and pathogen-host cell interactions. Therefore, we hypothesized that m6A plays a role in the regulation of the inflammatory response in macrophages exposed to TP. Methods: We first assessed m6A levels in TP-infected macrophages differentiated from the human monocyte cell line THP-1. The binding and interaction between the m6A "writer" methyltransferase-like 3 (METTL3) or the m6A "reader" YT521-B homology (YTH) domain-containing protein YTHDF1 and the suppressor of cytokine signaling 3 (SOCS3), as a major regulator of the inflammatory response, were explored in differentiated TP-infected THP-1 cells as well as in secondary syphilitic lesions from patients. The mechanisms by which YTHDF1 and SOCS3 regulate the inflammatory response in macrophages were assessed. Results and Conclusion: After macrophages were stimulated by TP, YTHDF1 was upregulated in the cells. YTHDF1 was also upregulated in the syphilitic lesions compared to adjacent tissue in patients. YTHDF1 recognizes and binds to the m6A methylation site of SOCS3 mRNA, consequently promoting its translation, thereby inhibiting the JAK2/STAT3 pathway, and reducing the secretion of inflammatory factors, which results in anti-inflammatory regulation. This study provides the first demonstration of the role of m6A methylation in the pathological process of syphilis and further offers new insight into the pathogenesis of TP infection.


Asunto(s)
Sífilis , Treponema pallidum , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Metiltransferasas/genética , Proteínas de Unión al ARN/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
15.
PeerJ ; 10: e12880, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295554

RESUMEN

FRIZZY PANICLE (FZP), an essential gene that controls spikelet differentiation and development in the grass family (Poaceae), prevents the formation of axillary bud meristems and is closely associated with crop yields. It is unclear whether the FZP gene or its orthologs were selected during the evolutionary process of grass species, which possess diverse spike morphologies. In the present study, we adopted bioinformatics methods for the evolutionary analysis of FZP orthologs in species of the grass family. Thirty-five orthologs with protein sequences identical to that of the FZP gene were identified from 29 grass species. Analysis of conserved domains revealed that the AP2/ERF domains were highly conserved with almost no amino acid mutations. However, species of the tribe Triticeae, genus Oryza, and C4 plants exhibited more significant amino acid mutations in the acidic C-terminus region. Results of the phylogenetic analysis showed that the 29 grass species could be classified into three groups, namely, Triticeae, Oryza, and C4 plants. Within the Triticeae group, the FZP genes originating from the same genome were classified into the same sub-group. When selection pressure analysis was performed, significant positive selection sites were detected in species of the Triticeae and Oryza groups. Our results show that the FZP gene was selected during the grass family's evolutionary process, and functional divergence may have already occurred among the various species. Therefore, researchers investigating the FZP gene's functions should take note of the possible presence of various roles in other grass species.


Asunto(s)
Oryza , Poaceae , Poaceae/genética , Filogenia , Secuencia de Bases , Mutación , Oryza/genética , ADN/metabolismo
16.
Front Plant Sci ; 13: 1060686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714721

RESUMEN

The alpine sandy dune ecosystem is highly vulnerable to global climate change. Ecological stoichiometry in plants and soils plays a crucial role in biogeochemical cycles, energy flow and functioning in ecosystems. The alpine sandy dune ecosystem is highly vulnerable to global climate change. However, the stoichiometric changes and correlations of plants and soils among different types of sandy dunes have not been fully explored. Three sandy dune types (moving dune, MD; semifixed dune, SFD; and fixed dune, FD) of the Sophora moorcroftiana shrub in the middle reaches of the Yarlung Zangbo River were used as the subjects in the current study. Plant community characteristics, soil physicochemical properties, carbon (C), nitrogen (N), and phosphorus (P) contents of leaves, understorey herbs, litter, and soil microbes were evaluated to explore the C:N:P stoichiometry and its driving factors. Sandy dune type significant affected on the C:N:P stoichiometry in plants and soils. High soil N:P ratio was observed in FD and high plant C:P and N:P ratios in SFD and MD. The C:N ratio decreased with sand dune stabilization compared with other stoichiometric ratios of soil resources. Leaf C:P and N:P ratios in S. moorcroftiana were higher than those in the understorey herb biomass, because of the low P concentrations in leaves. C, N and P contents and stoichiometry of leaves, understorey herbs, litter and microbe were significantly correlated with the soil C, N and P contents and stoichiometry, with a higher correlation for soil N:P ratio. P was the mainly limiting factor for the growth of S. moorcroftiana population in the study area and its demand became increasingly critical with the increase in shrub age. The variation in the C:N:P stoichiometry in plants and soils was mainly modulated by the soil physicochemical properties, mainly for soil moisture, pH, available P and dissolved organic C. These findings provide key information on the nutrient stoichiometry patterns, element distribution and utilization strategies of C, N and P and as well as scrubland restoration and management in alpine valley sand ecosystems.

17.
Front Genet ; 12: 770427, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804129

RESUMEN

The C2H2-zinc finger proteins (ZFP) comprise a large family of transcription factors with various functions in biological processes. In maize, the function regulation of C2H2- zine finger (ZF) genes are poorly understood. We conducted an evolution analysis and functional prediction of the maize C2H2-ZF gene family. Furthermore, the ZmZFP126 gene has been cloned and sequenced for further favorable allelic variation discovery. The phylogenetic analysis of the C2H2-ZF domain indicated that the position and sequence of the C2H2-ZF domain of the poly-zinc finger gene are relatively conserved during evolution, and the C2H2-ZF domain with the same position is highly conserved. The expression analysis of the C2H2-ZF gene family in 11 tissues at different growth stages of B73 inbred lines showed that genes with multiple transcripts were endowed with more functions. The expression analysis of the C2H2-ZF gene in P1 and P2 inbred lines under drought conditions showed that the C2H2-ZF genes were mainly subjected to negative regulation under drought stress. Functional prediction indicated that the maize C2H2-ZF gene is mainly involved in reproduction and development, especially concerning the formation of important agronomic traits in maize yield. Furthermore, sequencing and correlation analysis of the ZmZFP126 gene indicated that this gene was significantly associated with the SDW-NAP and TDW-NAP. The analysis of the relationship between maize C2H2-ZF genes and C2H2-ZF genes with known functions indicated that the functions of some C2H2-ZF genes are relatively conservative, and the functions of homologous genes in different species are similar.

18.
Mitochondrial DNA B Resour ; 6(8): 2105-2106, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34250231

RESUMEN

The complete chloroplast genome of Pennisetum centrasiaticum was sequenced and reported here. The total genome size was 138,294 bp in length, containing a large single-copy region of 81,229 bp, a small single-copy region of 12,419 bp, and a pair of inverted repeat regions of 22,288 bp. The GC content of P. centrasiaticum chloroplast genome was 38.6%. It encodes a total of 119 unique genes, including 81 protein-coding genes, 34 tRNA genes, and four rRNA genes. Phylogenetic analysis showed a strong sister relationship with Cenchrus ciliaris and Cenchrus purpureus. Our findings provide fundamental information for further evolutionary and phylogenetic researches of P. centrasiaticum.

19.
J Environ Sci (China) ; 104: 53-68, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33985748

RESUMEN

Constructed wetlands (CWs) have been introduced to and developed in China for environmental engineering over the most prosperous three decades (1990-2020). To study the origin, development process, and future trend of CWs, this review summarized a wide range of literatures between 1990 and 2020 by Chinese authors. Firstly, the publication number over years, research highlights, and the author contributions with the most published papers in this field were conducted through bibliometric analysis. Secondly, the most principal components of CWs, substrates and macrophytes were summarized and analyzed. Thirdly, the typical application cases from traditional CWs, pond systems to combined pond-wetland systems were presented. In China, CWs were predominately distributed in the east of the so-called 'Hu Huanyong Line'. Therefore CWs were limited by the socio-economic level and climatic conditions. It is unquestionable that the overall level of China's CWs has improved significantly, and one of the most prominent features has started towards the plural pattern development. There has been a trend of large-scale or low-cost CW application in the recent years. However, lifecycle research and management are required for better strategies in the future.


Asunto(s)
Eliminación de Residuos Líquidos , Humedales , China , Aguas Residuales/análisis
20.
Food Sci Anim Resour ; 41(3): 452-467, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34017954

RESUMEN

Raw milk is a nature media of microbiota that access milk from various sources, which constitutes a challenge in dairy production. This study characterizes the relationship between the raw milk quality and the bacteria diversity at different sampling sites in dairy farms, aiming to provide a strong scientific basis for good hygienic practices and optimized procedure in milk production. High-throughput sequencing of 16S rRNA V3-V4 region was used to analyze the components, abundance and diversity of 48 bacterial population sampled from 8 different sites in dairy farm: pre-sterilized cow's teats (C1), post-sterilized cow's teats (C2), milking cluster (E), milk in storage tank (M1), transport vehicle (M2), storage equipment (E2), cow's dung samples (F) and drinking water (W). Firmicutes account for predominantly 32.36% (C1), 44.62% (C2), 44.71% (E), 41.10% (M1), 45.08% (M2), 53.38% (F) of all annotated phyla. Proteobacteria accounts for 81.79% in W group and Actinobacteria 56.43% in E2 group. At the genus level, Acinetobacter was the most abundant genus that causes bovine mastitis, Acinetobacter and Arthrobacter were dominant in C1, C2, and E groups, Kocuria in E2 group and Arcobacter in W group. E, C1, and C2 group have very similar bacterial composition, and M1 and M2 demonstrated similar composition, indicating that the milking cluster was polluted by the environment or contact with cow udders. Bacterial population composition in different sampling sites identified by NGS reveals a correlation between the bacteria communities of raw milk production chain and the quality of raw milk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...